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ABSTRACT: This study considered Cutting Speed V, Feed rate F, Depth of cut D and Cutting Environment E as the input 
parameters for a Design of Experiment (DOE) based on a mixed-level Taguchi L32 orthogonal array. The test runs were 
conducted on a conventional lathe with spindle power of 3.75kW using TiN coated cutting tools and AISI 1040 carbon steel 
as workpiece. Signal-to-Noise (S/N) ratio analysis was applied to determine the optimum level for each parameter while 
analysis of variance (ANOVA) was employed to analyze the significant contributions of the control factors influencing the 
outcome - Specific Energy Consumption (SEC). Response surface methodology was used for developing a second order 
model for SEC as an energy efficiency indicator in Turning operations. Genetic Algorithm Solver was also used as 
optimization tool for the model. Results showed that for minimizing SEC, F was the most significant factor with a percentage 
contribution of 84.35% followed by V, E and D. The SEC model proved to be highly significant with p-value < 0.05 and was 
well fitted with the experimental value showing a high coefficient of determination (R2= 91.78%) value.  

Keywords: Specific Energy Consumption, Taguchi Design of Experiments, Optimization. 
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Nomenclature 

Adj MS - Adjusted Mean Squares 

%C - Percentage Contribution 

E - Cutting Environment 

D - Cutting Depth 

DF - Degree of freedom 

F - Feed Rate 

GA - Genetic Algorithm 

HB - Higher-the-Better 

i - Integer 

j - Integer 

MRR - Material Removal rate 

LB - Lower-the-Better 

n - Number of observations 

NB - Nominal-the-Best 

PC - Cutting Power 

p-value - Probability statistics 

SEC - Specific Energy Consumption 

Seq SS - Sequential Sum of Squares 

S/N - Signal-to-Noise ratio 

V - Cutting Speed 

y - Observed Response 

𝜷o - Regression constant term 

𝜷 i  - Main Effects Coefficient 

𝜷 ij - Interaction Effects Coefficient 

𝜷 ii - Quadratic Effects Coefficient 

𝜖 - Error 

1. Introduction 

Energy efficiency of production systems, especially 

of machining operations is becoming increasingly 

relevant and is a key focus of most developing nations 

[1]. The growing demands and continued rise in the 

value of energy serve to emphasize the importance of 

enhancing the energy and material-related efficiency of 

all manufacturing processes. Efficient energy 
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management is therefore not only fundamental to, but 

an integral part towards sustainable production systems 

[2]. 

The energy required in machining process is drawn 

from the electrical grid and can be generated from 

different power sources such as thermal, nuclear, wind, 

ocean wave and tides, solar, biomass, rivers, 

geothermal, etc. Balogun and Mativenga [3] reported 

that the use of carbon rich electricity generation sources 

is of global concern, because these processes produce 

CO2 emissions. Therefore, the higher the consumption 

of electricity in the manufacturing industries, the higher 

the carbon footprints related to the manufactured 

products. The industrial sector currently accounts for 

about half of the world’s total energy consumption, and 

this sectoral consumption has almost doubled over the 

last 60 years [4]. Besides, global energy demand is 

expected to grow by 53% between 2008 and 2035 [5]. 

Also industrial energy consumption is projected to 

grow at 2.4-3.2% per year through 2030 in developing 

countries and 1.2% in developed countries [6]. 

Mativenga and Rajemi [7] reported that optimizing 

energy demand in manufacturing is important for 

reducing the energy intensity of products and their 

vulnerability to escalating energy prices in the future. 

Pusavec et al [8] reported that an estimated two- thirds 

of the electrical energy used by machining industry is 

meant for running motors and drives for cutting tools. 

The cost of energy used over a ten-year period is about 

100 times higher than the initial purchase cost of the 

machine tools used to manufacture products [9]. 

Therefore, prior to machining of a part or component 

the optimum energy consumption per unit volume of 

the machined product should be determined in order to 

improve profitability, reduce operating cost and 

minimize environment impact generated from energy 

production of manufacturing firms. Specific energy in 

this study is considered as an energy efficiency indicator 

to minimize the energy intensity of a given machined 

product.  

One of the processes widely used in manufacturing 

is Turning. Over the years, optimization of Turning 

processes with respect to machining performance based 

on machining cost, quality and productivity has 

received enormous attention unlike optimization based 

on Specific Energy consumption, despite recent 

emphasis on energy savings and conservation. 

2 Materials and Methods 

2.1 Experimental Setup and Procedure 

Cutting performance tests were carried out on a 

lathe machine (Master 2500, Colchester, UK) with a 

3.75kW spindle power and a maximum spindle speed of 

2500 rpm. A cylindrical AISI 1040 carbon steel rod of 

diameter 35mm and overhang length 120mm was used 

as the workpiece per experimental run. The cutting tool 

used for the turning operation was Widia tool holder 

(ANSI No. PCLNR2525M16, Widia, UK) and diamond 

shaped Carbide inserts with TiN coating (ISO 

CNMG120408). KOOLCUT-40 soluble oil was used to 

perform the experiment under wet cutting environment. 
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Figure 1, Experimental Setup for the Turning Operation 

2.2 Experimental Design 

Experimental design is an efficient procedure of 

planning experiments so that the data obtained can be 

analyzed to yield valid and objective conclusions [10]. 

The Taguchi experimental design technique was 

adopted to study the entire parameter space with only a 

minimum number of experiments. The advantages of 

Taguchi’s method are the saving of effort in conducting 

experiments, saving experimental time, reducing the 

cost, and discovering significant factors quickly. The 

main thrust of the Taguchi’s experimental design is to 

determine the parameter settings which produce the 

best level of performance characteristics with minimum 

variation [10]. The process parameters selected as the 

control factors include: Cutting Environment (E), 

Cutting Speed (V), Feed rate (F) and Depth of cut (D). 

The tests were carried out following Taguchi-L32 mixed 

level design of experiments (DOE) where factor E was 

varied at two levels (E1- wet and E2 - dry), while input 

factors V, F, and D were varied at four levels as: (V1, V2, 

V3, V4 = 50, 75, 100, 125m/min), (F1, F2, F3, F4 = 0.2, 0.3, 

0.4, 0.5mm/rev), and (D1, D2, D3, D4 = 0.25, 0.50, 0.75, 

1.00mm). The mixed-level Taguchi-L32 design was 

adopted because it is the best available design suitable 

to accommodate factors with varying levels having a 

one 2-level parameter and three 4-level parameters. 

The DOE matrix consisting of 32 experimental runs 

was generated using MINITAB 16 software. The matrix 

was used for obtaining Cutting Power PC  [W], material 

removal rate (MRR) [mm3/s] and specific energy SEC 

consumption data for every experimental run. 

2.3 Experimental Determination of Specific 

Energy Consumption SEC  

In this study, the electrical Power was measured by 

a 3-phase digital power meter (MS2203, MASTECH, 

China) which was connected to the lathe machine motor 

in a delta-mode as in Figure 1. Cutting Power PC in each 

run was recorded and converted to SEC using Equation 

1.  

𝑆𝐸𝐶 = 𝑃𝐶
𝑀𝑅𝑅

=  𝑃𝐶
𝑉𝐹𝐷∗103

      - (1) 

2.4 Response Surface Methodology  

The relationship between the process parameters 

and output response was determined using multiple 

regression analysis of the data obtained from the DOE 

to develop a second order polynomial model. Similar 

functional relationship between the desired response 

and the process parameters had been expressed by 

Palanikumar [11] and Raj [12] as: 

𝑆𝐸𝐶 = 𝑓( 𝑉,𝐹,𝐷) +  𝜖   - (2) 

For better correlation and approximation of the 

response surface, the study utilized the second order 

response surface model which involves linear terms, 

two-way interactions terms and quadratic terms. 

Therefore, the specified model for the study showing 

the relationship between response, SEC and the turning 

parameters Xi,j was estimated using Equations 3 and 4. 

𝑦 = 𝛽𝑜 +�𝛽𝑖𝑋𝑖 + ��𝛽𝑖𝑗𝑋𝑖𝑋𝑗 +
𝑗𝑖

𝑛

𝑖=1

�𝛽𝑖𝑖𝑋𝑖2
𝑛

𝑖=1

             (3) 

 

𝑆𝐸𝐶 = 𝛽𝑜 + 𝛽1𝑉 + 𝛽2𝐹 + 𝛽3𝐷 + 𝛽12𝑉𝐹 + 𝛽23𝐹𝐷 + 𝛽31𝐷𝑉

+ 𝛽11𝑉2 + 𝛽22𝐹2 + 𝛽33𝐷2                (4)  

MINITAB-16 software was used to determine the 

regression coefficients of the model based on the 

response, specific energy consumption. 

2.5 OPTIMIZATION METHODS 

2.5.1 Taguchi S/N Ratios   
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Taguchi S/N ratio is a statistical measure of 

performance or quality for data analysis and prediction 

of optimal parameter setting [13]. The S/N ratio is the 

ratio of the mean (Signal) to the standard deviation 

(Noise). It depends on the quality characteristics of the 

process to be optimized. The standard S/N ratios 

generally used include: Nominal-is-Best (NB), “lower-

the-better” (LB) and Higher-the-Better (HB). 

In this study, MINITAB 16 was used to solve the 

optimization problem. Specific energy consumption was 

taken as LB characteristics, aimed at minimizing the 

response, with an ideal target being zero. This LB - S/N 

ratio was computed as equation (5) following Ross [13]. 

𝑆 𝑁⁄ = −10𝑙𝑜𝑔
1
𝑛�

𝑦𝑖2
𝑛

𝑖=1

                              −               (5)  

2.5.2 Genetic Algorithm (GA) 

Genetic algorithms (GA) are computational models 

inspired based on Darwin’s survival of the fittest 

principle of evolution, natural selection and genetics 

using a search procedure to find the best and fittest 

design solutions [14]. These algorithms encode a 

potential solution to a specific problem on a simple 

chromosome–like data structure. The objective of the 

GA optimization approach is to achieve minimum SEC 

by adjusting the cutting conditions by numerical 

optimization using the GA Toolbox in MATLAB 

(R2007b). The optimization problem was solved by 

coupling the SEC model from response surface 

methodology with the GA. The optimization was 

formulated in the standard mathematical format as:  

 Find: V (Cutting speed, m/min), F (Feed rate, 

mm/rev), and D (Depth of cut) 

 Minimize: SEC (V, F, D) 

 Subject to constraints: �
𝑉𝑚𝑖𝑛 ≤ 𝑉 ≤ 𝑉𝑚𝑎𝑥
𝐹𝑚𝑖𝑛 ≤ 𝐹 ≤ 𝐹𝑚𝑎𝑥

 𝐷𝑚𝑖𝑛 ≤ 𝐷 ≤ 𝐷𝑚𝑎𝑥
 

The following options were selected in the GA 

Solver Toolbox for formulating the optimization 

problem: Number of Variables = 3; Lower bound [50 

0.20 0.25]; Upper bound [125 0.50 1.00]; Population type 

= Double vector; Population = 100; Crossover Fraction: 

0.80; Mutation rate: 0.20; Number of generations = 100. 

The algorithm stops when the value of the fitness 

function for the best point in the current population is 

less than or equal to the fitness limit. 

3. RESULTS AND DISCUSSION 

3.1 Data Presentation 

The results obtained from the experimental runs 

following the DOE are shown in Table 1.  

Table 1 Experimental results for SEC and S/N ratios. 

 

3.2 Data Analysis and Discussions 

3.2.1  Regression Analysis  

The Minitab software utilized the specified data to 

develop the SEC model under wet and dry cutting 

environment. Equation 6 represents the specific energy 

consumption (SEC) model in terms of the machining 
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parameters such as cutting speed, feed rate and depth of 

cut under the influence of two cutting environment. 

𝑆EC = 5.27391 − 0.01254V− 5.44568F + 0.32166D

+ 0.00005 V2 + 0.00025VF + 0.002VD

+ 5.76968F2 − 2.45548FD + 0.21263D2 

        - (6) 

3.2.2 Analysis of Variance (ANOVA) for the SEC 

Model 

The experimental results were analyzed with 

ANOVA to identify the factors that significantly affect 

the performance measures on the total variance of the 

results. The ANOVA, carried out at α = 0.05 significance 

level (95% confidence level) gave results for SEC shown 

in Table 2. The sources with P-value < 0.05 are 

considered as high statistically significant. 

Table 2 Analysis of variance (ANOVA) for SEC Model 

Source DF Seq SS Adj SS Adj MS F p-

value 

%C 

Model 9 3.89123 3.89123 0.432359 63.10 0.0000  

𝑉 1 0.11533 0.05103 0.051034 16.83 0.0005 2.85 

𝐹 1 3.41052 0.15395 0.153954 497.72 0.0000 84.38 

𝐷 1 0.02347 0.00499 0.004989 3.43 0.0777 0.58 

𝑉2 1 0.03348 0.03348 0.033479 4.89 0.0378 0.83 

𝐹2 1 0.10653 0.10653 0.106525 15.55 0.0007 2.64 

𝐷2 1 0.00565 0.00565 0.005651 0.82 0.3736 0.14 

𝑉𝐹 1 0.00002 0.00002 0.000019 0.00 0.9584 0.00 

𝑉𝐷 1 0.00782 0.00782 0.007819 1.14 0.2970 0.19 

𝐹𝐷 1 0.18842 0.18842 0.188418 27.50 0.0000 4.66 

Resid. 

Error 

22 0.15075 0.15075 0.006852   3.73 

Total 31 4.04198     100 

3.2.3 Summary of the Model 

The statistical properties obtained for the model 

include: Sample Standard Deviation S = 0.0827784, 

Coefficient of determination (R-Sq) = 96.27%, Adjusted 

coefficient of determination (R-Sq, adj) = 94.74%, 

Predicted residual sum of squares (PRESS) = 0.332412; 

Predicted Coefficient of determination (R-Sq, pred) = 

91.78%. 

From Table 2, the p-value < 0.05 for the model 

implying that this model is highly statistically 

significant. It was observed that among the main (linear) 

factors, the feed rate was the most predominant with a 

percentage contribution to SEC of %C = 84.38%, followed 

by cutting speed (%C = 2.85) and depth of cut (%C = 

0.58). The depth of cut is rather insignificant due to its 

p-value > 0.05. The quadratic terms V2 and F2 are 

significant except for D2. The interaction between feed 

rate and depth of cut (FD) was found to be the only 

significant interaction term in the model because its p-

value < 0.05. Finally, the output coefficient of 

determination, R-squared value of 96.27% indicates the 

accuracy of the model and the predicted R-squared for 

the model is equal to 91.78% which indicates a good 

correlation with experimental data. 

3.2.4 Adequacy Tests 

Residual plots for response parameter SEC in Figure 

2 were utilized to check any model inadequacy or 

unusual problem with normality assumptions. 

Inspection of some diagnostic plots of the model was 

done to test the statistical validity of the model.  
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Figure 2, Residual Plots of SEC 

From Figure 2a, nearly all the points on the normal 

probability plot are said to spread approximately in a 

straight line implying that the errors were distributed 

normally and a little deviation from normality was 

observed. This shows the effectiveness of the model. 

From Figure 2c, the histogram showed an approximate 

symmetric nature indicating that the residuals are 

normally distributed. Figures 2b showed that the 

residuals were randomly scattered within constant 

variance across the residuals versus the predicted plot 

as they are scattered randomly around zero in residuals 

versus the fitted values. The residuals observed were 

from -0.20 to 0.20, which corroborates the earlier 

observation of high correlation between the model and 

experimental values. Figure 2d shows that there is no 

obvious pattern and unusual structure present in the 

data which implies that the residual structure analysis 

does not indicate any model inadequacy or no error due 

to time or data collection order. 

3.2.5 Trend Analysis of Process Parameters on SEC 

using Surface Plot 

Figures 3a and 3b show the response surface plots 

of SEC based on the DOE parameters. Figure 3a shows 

SEC variation with respect to cutting speed and feed rate 

indicating that SEC decreases with increase in feed rate. 

Figure 3b shows the influence of cutting speed and 

depth of cut on SEC. The increase in depth of cut and 

cutting speed decreases the SEC in the turning 

operations. Therefore, it can be deduced from Figures 3a 

and 3b that the minimum SEC can be achieved by 

increasing the feed rate, cutting speed and depth of cut. 

This is due to the fact that when feed rate, cutting speed 

and depth of cut are increased, MRR increases thereby 

reducing SEC. 

 

Figure 3a, Response surface of SEC versus Cutting Speed 

V and Feed Rate F 

 

Figure 3b, Response surface of SEC versus Feed Rate F 

and Depth of cut D 

3.2.6 S/N Ratios Analysis for Optimum Settings 

The MINITAB16 software was used to analyze the 

main effect of S/N ratio on the optimization analysis for 

SEC. Figure 4 shows the main effect plots and the 

corresponding S/N response for SEC. The overall mean 
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response is represented by the horizontal line at the 

centre of the curves. 

 

Figure 4, Main effect plot (SEC) for S/N ratios 

a) Optimum settings  

From the S/N ratio analysis in Figure 4, the level of 

the factors with the highest S/N ratio was taken as the 

optimum level for the response, therefore the optimal 

machining conditions are Wet Cutting Environment 

(E1), 100 m/min cutting speed (V3), 0.50 mm/rev feed 

rate (F4) and 1 mm depth of cut (D4) to minimize SEC, 

that is, an optimal settings coded E1V3F4D4. 

b) Ranking Effect of parameters  

The ranks and delta-values also indicate the relative 

importance of each factor to the response. The values 

obtained for the various factors show that feed rate had 

the greatest effect on SEC with rank and delta values of 1 

and 2.243 respectively, followed by cutting speed with 2 

and 0.440, cutting environment with 3 and 0.328, and 

depth of cut with 4 and 0.235 rank and delta values, 

respectively.  

3.2.7  Optimization Results for Genetic Algorithm 

GA optimization was based on the fitness function 

for specific energy SEC equation (6) above. 

 

Figure 5, Performance of fitness value with generation. 

Figure 5 showed that the optimal SEC value = 

2.7758J/mm3 and accompanying optimal control factors 

of cutting speed V = 100.645 m/min, feed rate F = 

0.5mm/rev and Depth of cut D = 1mm. Optimal solution 

was obtained at 81st generation (iteration) of the Genetic 

Algorithm. 

4. CONCLUSION 

 Taguchi DOE, Genetic Algorithm and Desirability 

function analyses are effective means of 

determining the optimal specific energy 

consumption SEC in machining (Turning) 

operations. 

 ANOVA for the SEC - model revealed that feed rate 

F is the most significant factor with a percentage 

contribution (%C) of 84.38% on SEC, followed by 

cutting speed V with %C = 2.85%. Depth of cut D 

had the least influence on SEC with a %C = 0.58%. 

 The main effect plots of S/N ratio and response 

indicates that F is the most dominant or ranked 

parameter on SEC followed by V, E and depth of cut 

D, in that order. 
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 The factors interactions plots for SEC indicated 

strong interactions between feed rate F and depth of 

cut D on SEC.  

 The residual plots for SEC model were generated 

and showed that SEC-model was well fitted with the 

experimental-values giving a high correlation 

between the fitted values and observed values (R2= 

91.78%).  

 The 3D response surface plots of SEC decreased with 

increasing cutting speed V, feed rate F and depth of 

cut D. The optimal parameter settings to minimize 

SEC and reduce the deviation from target are: Wet 

cutting environment (Level 1), 100m/min cutting 

speed (Level 3), 0.5mm/rev feed rate (Level 4) and 

1mm depth of cut (Level 4). 
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